师资队伍

基本信息

姓名:李忠华

部门:代数与数论

职称:副教授

E-mail:zhonghua_li@tongji.edu.cn

办公室:宁静楼217

研究方向:
  1. Zeta函数及其多元推广的特殊值的研究, 特别是与多元zeta值相关问题的研究;
  2. Motivic多元zeta值的组合性质的研究;
  3. 代数数论。

Research Interests

 1. Special values of various zeta functions and their multivariate generalizations, especially multiple zeta values;

 2. Motivic multiple zeta values;

 3. Algebraic number theory. 

教育背景:

2005.04-2008.03,东京大学大学院数理科学研究科,博士

2003.04-2005.03,东京大学大学院数理科学研究科,硕士

1997.09-2001.07,中国科学技术大学数学系,本科

Education

Apr., 2005 - Mar., 2008, Graduate School of Mathematical Sciences, University of Tokyo, Ph.D. Mathematics

Apr., 2003 - Mar., 2005, Graduate School of Mathematical Sciences, University of Tokyo, M.S. Mathematics
Sep., 1997 - July, 2001, Department of Mathematics, University of Science and Technology of China, B.S.  Mathematics

工作经历:

2012.10-至今,同济大学数学科学学院,副教授

2010.10-2012.10,东京大学大学院数理科学研究科,日本学术振兴会外国人特别研究员

2008.07-2012.10,同济大学数学系,讲师

2001.07-2002.12,中国科学技术大学数学系,助教

Professional Experience

Oct., 2012 - present, Associate Professor, School of Mathematical Sciences, Tongji University

Oct., 2010 - Oct., 2012, JSPS Postdoctral Fellowship,  Graduate School of Mathematical Sciences, University of Tokyo

July, 2008 - Oct., 2012, Lecturer, Department of Mathematics, Tongji University

July, 2001- Dec., 2002, Teaching Assistant, Department of Mathematics, University of Science and Technology of China

论文与出版物:

 Publication List:

[16] Zhonghua Li, Derivation relations and duality for the sum of multiple zeta values, Funct. Approx. Comment. Math., 58 (2) (2018), 215-220.

[15] Zhonghua Li and Chen Qin, Stuffle product formulas of multiple zeta values, Taiwanese J. Math. 22 (3) (2018), 529-543.

[14] Zhonghua Li, Relations of multiple zeta values: from the viewpoint of some special functions, RIMS K\^{o}ky\^{u}roku Bessatsu B68 (2017), 123-133.

[13] Zhonghua Li and Chen Qin, Some relations of interpolated multiple zeta values, Internat. J. Math. 28 (5) (2017), 1750033, 25 pp.

[12] Zhonghua Li and Chen Qin, Shuffle product formulas of multiple zeta values, J. Number Theory 171 (2017), 79-111.

[11] Zhonghua Li, On functional relations for the alternating analogues of Tornheim's double zeta function, Chin. Ann. Math. 36(B) (6) (2015), 907-918.

[10] Zhonghua Li, Another proof of Zagier's evaluation formula of the multiple zeta values \zeta(2,\ldots,2,3,2,\ldots,2), Math. Res. Lett. 20 (5) (2013), 947-950.

[9] Zhonghua Li, Some identities in the harmonic algebra concerned with multiple zeta values, Int. J. Number Theory 9 (3) (2013), 783-798.

[8] Zhonghua Li, Regularized double shuffle and Ohno-Zagier relations of multiple zeta values, J. Number Theory 133 (2) (2013), 596-610.

[7] Zhonghua Li, On a conjecture of Kaneko and Ohno, Pacific J. Math. 257 (2) (2012), 419-430.

[6] Zhonghua Li, Higher order shuffle regularization for multiple zeta values, Proc. Amer. Math. Soc. 138 (7) (2010), 2321-2333.

[5] Zhonghua Li, Gamma series associated to elements satisfying regularized double shuffle relations, J. Number Theory 130 (2) (2010), 213-231.

[4] Zhonghua Li, Sum of multiple q-zeta values, Proc. Amer. Math. Soc. 138 (2) (2010), 505-516.

[3] Zhonghua Li, Sum of multiple zeta values of fixed weight, depth and i-height, Math. Z. 258 (1) (2008), 133-142.

[2] Chenghao Chu, Zhonghua Li and Guangtian Song, Relative K2 of rings with SR2*(R,I) condition, Adv. Math. (China) 35 (2006), 93-101.

[1] Zhonghua Li, Guangtian Song and Chenghao Chu, On PMM rings, J. Univ. Sci. Technol. China 35  (2005), 32-41.

Preprint: 

[5] Zhonghua Li and Ende Pan, Topological properties of q-analogues of multiple zeta values,  arXiv: 1808.03901.

[4] Zhonghua Li and Noriko Wakabayashi, Sum of interpolated multiple q-zeta values, arXiv: 1710.04025.

[3] Zhonghua Li and Ce Xu, On q-analogues of quadratic Euler sums,  arXiv: 1702.08507.

[2] Zhonghua Li and Chen Qin, Weighted sum formulas of multiple zeta values with even arguments, arXiv: 1612.06563.

[1] Zhonghua Li and Chen Qin, Some relations deduced from regularized double shuffle relations of multiple zeta values, arXiv: 1610.05480.

科研项目:

5. 国家自然科学基金面上项目《关于zeta函数特殊值的研究》(11471245)

4. 上海市自然科学基金面上项目《zeta函数的特殊值和超几何函数》(14ZR1443500)

3. 国家自然科学基金青年基金项目《多重zeta值相关问题的研究》(11001201)

2. 国家自然科学基金数学天元基金项目《多重zeta值的代数和几何》(10926111)

1. 教育部留学回国人员科研启动基金项目《多重zeta值的相关问题》

教学状况:

2018-2019学年第一学期

  • 高等代数(上),周一3,4@北408,周四3,4@北205
  • 高等代数(上)习题课,周三3,4@北119
  • 复半单李代数及其表示理论,周一5,6,7@宁静楼115
  • 数论讨论班,周二上午@宁静楼109,周四下午@宁静楼109

2017-2018学年第二学期

  • 高等代数(下),周一3,4@一126,周三5,6@一126
  • 高等代数(下)习题课,周五双3,4@北112
  • 数论讨论班,周二上午,周三上午@宁静楼110

2017-2018学年第一学期

  • 高等代数(上),周二3,4@瑞安楼阶一,周五3,4@一322
  • 高等代数(上)习题课,周四单5,6@一105
  • 李群与李代数,周一1,2,3@瑞安楼207
  • 数论讨论班,周三@瑞安楼207

2016-2017学年第二学期

  • 高等代数(下),周一5,6@北420,周四1,2@北420
  • 高等代数(下)习题课,周五双5,6@北105
  • 数论讨论班,周二下午,周四下午@宁静楼104

2016-2017学年第一学期

  • 高等代数(上),周二3,4@南118,周四1,2@北110
  • 高等代数(上)习题课,周三双@北408
  • 李群与李代数,周三5,6,7@致远楼106
  • 多元zeta值讨论班,周二下午@致远楼106
  • 代数数论讨论班,周四下午@致远楼106

2015-2016学年第二学期

  • 高等代数(下),周一3,4@北117,周三3,4@北117
  • 高等代数(下)习题课,周五单5,6@北410
  • 数论讨论班,周一下午@宁静楼104

2015-2016学年第一学期

  • 高等代数(上),周二3,4@北410,周四1,2@北410
  • 高等代数(上)习题课,周三双1,2@北410
  • 李群与李代数,周五1,2,3@致远楼105
  • 数论讨论班,周四下午@宁静楼104
  • 代数数论基础,周五下午@宁静楼104

联系我们

    电话:86-21-65981384

    地址:上海市四平路1239号 致远楼

Copyright © 2018  同济大学数学科学学院 版权所有.