学术报告

John-Nirenberg Inequality and Collapse in Conformal Geometry

阅读次数:1075

题目:John-Nirenberg Inequality and Collapse in Conformal Geometry
报告人:李宇翔 教授 (清华大学)
时间:2018年12月17日16:00-17:00
地点:致远楼101室
Abstract: Let $g$ be a metric over $B$ which is conformal to $g_0$.We assume $\|R(g_k)\|_{L^p} <C$, where $R$ is the scalar curvature and $p\geq \frac{n}{2}$.We will use the John-Nirenberg inequality to prove that if $vol(B,g_k) \rightarrow 0$, then there exists $c_k \rightarrow+\infty$, such that $c_ku_k$ 
converges to a positive function weakly in $W^{2,p}_{loc}(B)$. As an application, we will study the bubble tree convergence of a conformal metric sequence with integral-bounded scalar curvature.

欢迎广大师生参加!

联系我们

    电话:86-21-65981384

    地址:上海市四平路1239号 致远楼

Copyright © 2018  同济大学数学科学学院 版权所有.