科研进展

(芮和兵、宋林亮)Affine Brauer category and  parabolic category  O  in types B, C, D

阅读次数:7215

论文题目:Affine Brauer category and  parabolic category  O  in types B, C, D

论文作者:Hebing Rui, Linliang Song

发表刊物:Mathematische Zeitschrift

成果介绍:

oA strict monoidal category referred to as affine Brauer category AB is introduced over a commutative ring κ containing multiplicative identity 1 and invertible element 2. We prove that morphism spaces in  AB are free over κ. The cyclotmic (or level k) Brauer category CBf(ω) is a quotient category of  AB. We prove that any morphism space in CBf(ω) is free over κ with maximal rank if and only if the  u-admissible condition holds in the sense of (1.32). Affine Nazarov–Wenzl algebras (Nazarov in J Algebra 182(3):664–693, 1996) and cyclotomic Nazarov–Wenzl algebras (Ariki et al. in Nagoya Math J 182:47–134, 2006) will be realized as certain endomorphism algebras in AB and CBf(ω), respectively. We will establish higher Schur–Weyl duality between cyclotomic Nazarov–Wenzl algebras and parabolic BGG categories O associated to symplectic and orthogonal Lie algebras over the complex field C. This enables us to use standard arguments in (Anderson et al. in Pac J Math 292(1):21–59, 2018; Rui and Song in Math Zeit 280(3–4):669–689, 2015; Rui and Song in J Algebra 444:246–271, 2015), to compute decomposition matrices of cyclotomic Nazarov–Wenzl algebras. The level two case was considered by Ehrig and Stroppel in (Adv. Math. 331:58–142, 2018).

所属学科:基础数学

论文地址:http://link.springer.com/article/10.1007/s00209-018-2207-x

联系我们

    电话:86-21-65981384

    地址:上海市四平路1239号 致远楼

Copyright © 2018  同济大学数学科学学院 版权所有.