学术报告

Semiparametric Analysis of Longitudinal Data Anchored by Interval-Censored Events 

阅读次数:1920

题目:Semiparametric Analysis of Longitudinal Data Anchored by Interval-Censored Events 
报告人:Prof. Ying Zhang (Department of Biostatistics College of Public Health University of Nebraska Medical Center )
地点:致远楼101室
时间:2019年7月5日 10:00-11:00
Abstract 
In many longitudinal studies, outcomes are assessed on time scales anchored by certain clinical events. When the anchoring events are unobserved, the study timeline becomes undefined, and the traditional longitudinal analysis loses its temporal reference. We consider the analytical situations where the anchoring events are interval censored. We show that by expressing the regression parameter estimators as stochastic functionals of a plug-in estimate of the unknown anchoring event distribution, the standard longitudinal models can be modified and extended to accommodate the less well defined time scale. This extension enhances the existing tools for longitudinal data analysis. Under mild regularity conditions, we show that for a broad class of models, including the frequently used generalized mixed-effects models, the functional parameter estimates are consistent and asymptotically normally distributed with an n1/2 convergence rate. To implement, we developed a hybrid computational procedure combining the strengths of the Fisher's scoring method and the expectation-expectation (EM) algorithm. We conducted a simulation study to validate the asymptotic properties, and to examine the finite sample performance of the proposed method. A real data analysis was used to illustrate the proposed method.

欢迎各位参加!

联系我们

    电话:86-21-65981384

    地址:上海市四平路1239号 致远楼

Copyright © 2018  同济大学数学科学学院 版权所有.