Partial C^0 Estimate and Hamilton-Tian Conjecture

题目:Partial C^0 Estimate and Hamilton-Tian Conjecture

报告人:王枫 副教授 (浙江大学)


时间:2020年9月10日 14:00-15:00

摘要: Hamilton-Tian conjecture says that the Kahler-Ricci flow on Fano manifolds converges to a limit space admitting Kahler-Ricci soliton outside the singularity of dimension 4. This conjecture has been proved by Chen-Wang and Bamler. Their proof depends on the metric geometry. Using Liu-Szekelyhidi's work on partial C^0 estimate, we will prove a weak version of Hamilton-Tian conjecture.

参会方式: 加入腾讯会议:

会议 ID:464 856 251

All are welcome!