科学研究
学术报告
Morse Theory and Moduli Spaces of Self-Avoiding Polygonal Linkages
邀请人:马彪
发布时间:2025-09-10浏览次数:

题目:Morse Theory and Moduli Spaces of Self-Avoiding Polygonal Linkages

报告人:周泽 教授(深圳大学)

地点:宁静楼117室

时间:2025年9月21日 星期日 10:30-11:30

摘要: We show that a $d$-dimensional smooth manifold $M$ is diffeomorphic to $\mathbb R^d$ if it admits a Lyapunov-Reeb function, i.e., a smooth map $f:M\to \mathbb R$ that is proper, lower-bounded, and has a unique critical point. By constructing such functions, we prove that the moduli spaces of self-avoiding polygonal linkages and configurations are diffeomorphic to Euclidean spaces. This resolves the Refined Carpenter's Rule Problem and confirms a conjecture posed by Gonzalez and Sedano-Mendoza. Furthermore, we describe foliation structures of these moduli spaces via level sets of Lyapunov-Reeb functions and develop algorithms for related problems. This is a joint work with Te Ba.

报告人简介: 周泽,男,深圳大学数学科学学院教授。2015年博士毕业于中国科学院数学与系统科学研究院,研究方向为复分析与离散几何。他的主要贡献在于将微分拓扑方法、Teichmuller理论等工具引入到圆堆积的研究中,解决了Schulte、Chow-Luo等人提出的一些公开问题,此外提出并建立了钝角情形下的Koebe-Andreev-Thurston定理。周泽教授在Invent. Math.、Amer. J. Math.、Math. Ann.、Adv. Math.、Pacific J. Math.等国际期刊接受发表论文多篇。他曾先后获得第十二届钟家庆数学奖、2016中国新锐科技人物突出贡献奖等奖励,主持国家自然科学基金青年A、面上及青年B项目各1项,参与国家自然科学基金重点项目1项。

欢迎各位参加!